Електричні машини І апарати




Скачать 256.32 Kb.
НазваниеЕлектричні машини І апарати
Дата публикации28.07.2013
Размер256.32 Kb.
ТипДокументы
uchebilka.ru > Математика > Документы

ЕЛЕКТРИЧНІ МАШИНИ І АПАРАТИ



УДК 621.318

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ МАГНИТНОГО ПОЛЯ
В РАБОЧЕМ ЗАЗОРЕ ЭЛЕКТРОМАГНИТНОЙ СИСТЕМЫ, ВЫПОЛНЕННОЙ
В ВИДЕ ШАЙБЫ С ВЫРЕЗОМ В КОЛЬЦЕВОМ ПОЛЮСЕ


Загирняк М.В., Подорожный С.В., Загирняк В.Е.

Кременчугский государственный политехнический университет

Кузнецов Н.И.

Восточноукраинский национальный университет им. В. Даля





Введение. В [1,2] была описана конструкция электромагнитного железоотделителя и произведен расчет потокораспределения в его извлекающей магнитной системе, выполненной в виде электромагнитной шайбы (ЭМШ) с немагнитной вставкой в кольцевом полюсе. Однако, основным параметром железоотделителя является его извлекающее усилие, а для данного железоотделителя важно еще и значение магнитного поля в зоне разгрузки его извлекающей магнитной системы. Расчет этих параметров трехмерного магнитного поля, создаваемого в воздушном зазоре электромагнитной системы, является весьма сложной задачей. Поэтому целесообразно исследовать магнитное поле ЭМШ на физической модели, выполненной в уменьшенном масштабе.

^ Цель работы. Исследовать магнитное поле, создаваемое извлекающей магнитной системой в ее рабочей зоне, и влияние выреза во внешнем кольцевом полюсе на значения напряженности магнитного поля и магнитной силы в зоне разгрузки с целью выявления эффективности наличия выреза.

^ Материал и результаты исследований. Для экспериментальных исследований была разработана и изготовлена физическая модель электромагнитной шайбы в масштабе линейных размеров 1:5. Детали магнитопровода модели изготавливались из магнитомягкой отожженной стали, близкой по магнитным свойствам литейной стали 15Л, используемой при промышленном изготовлении магнитопроводов железоотделителей. Поверхности взаимного прилегания сердечника, ярма и кольцевого полюса выполнялись с высокой степенью точности и чистоты поверхности для обеспечения минимальных зазоров между элементами магнитопровода.

Намагничивающая катушка физической модели изготавливалась без каркаса из провода марки
ПЭВ–2 и изолировалась киперной лентой с пропиткой лаком и последующим запеканием. Для обеспечения необходимых намагничивающих сил во всех режимах магнитной нагрузки железоотделителя, катушка выполнялась сплошной до заполнения межполюсного окна.

Питание катушки физической модели осуществлялось от реостатного выпрямителя из комплекса измерительной баллистической установки БУ–3 с контролем намагничивающего тока по амперметру типа М1104 класса точности 0,2.

Индукция магнитного поля в рабочей зоне измерялась теслаамперметром Ф4354/1 (класс точности 0,5) со щупом с поперечным сечением 40,8 мм. Измерения проводились над характерными точками центрального сечения, изображенными на рис. 1.



Рисунок 1 - Расположение характерных
точек

Точки 3 и 3* расположены на окружности диаметром , точки 4 и 4* – на окружности .

Измерения проводились при магнитодвижущей силе (МДС) F=9000 А.

Напряженность магнитного поля, соответствующая каждому полученному значению магнитной индукции, определялась по формуле:

(1)

где - магнитная проницаемость воздуха ( Гн/м).

В табл. 1 приведены результаты измерения магнитной индукции над характерными точками, изображенными на рис.1. В табл. 2 приведены вычисленные по (1) соответствующие им значения напряженности магнитного поля (где - расстояние от поверхности полюсов).

На рис. 2 изображены зависимости напряженности магнитного поля от расстояния y над характерными точками в рабочей зоне ЭМШ, на рис. 3 – графики распределения напряженности магнитного поля в рабочей зоне ЭМШ на различных расстояниях от поверхности ее полюсов.


^ Таблица 1 -

Значения магнитной индукции в рабочей зоне ЭМШ


y, мм

Индукция B, мТл

1

2

2*

3

3*

4

4*



5п

5

197

300

305

77

85

22

57

66

68

10

182

200

218

73

80

21

43

38

39

15

171

170

178

67

75

20

34

28

28

20

152

140

147

61

69

19

28

23

24

25

134

118

120

56

62

18

25

20

21

30

117

100

102

50

56

17

22

19

20

35

101

88

88

45

50

16

19

17

18

40

87

75

76

41

45

15

18

16

16

45

75

65

66

36

40

14

16

15

14

50

66

57

57

33

35

13

15

13

13

55

55

48

51

28

32

13

14

13

12

60

50

43

45

27

28

12,5

13

12

12

65

44

38

39

24

25

12

12

12

11

70

38

33

35

22

23

11

11

11

11

75

34

30

30

20

20

10

10

10

10

80

30

27

28

18

18

9

9

10

10

85

27

23

24

16

17

9

8

9

9

90

23

21

22

14

15

8

8

9

9



Рисунок 2 - Зависимости напряженности магнитного
поля в рабочей зоне ЭМШ над
характерными точками



Р


исунок 3 - Распределение напряженности
магнитного поля в рабочей зоне ЭМШ
над характерными точками

^ Расчет извлекающего усилия. Для оценки влияния выреза во внешнем кольцевом полюсе на извлекающую способность ЭМШ был произведен расчет параметра электромагнитной силы HgradH, который определяется конструкцией электромагнита и служит критерием создаваемого им извлекающего усилия. Расчет HgradH производился в направлении, в котором создается извлекающее усилие, т.е. перпендикулярно плоскости поверхности полюсов электромагнита.

. (2)

Для вычисления HgradH применялись формулы численного дифференцирования [3]. Согласно [3], на результаты численного дифференцирования большое влияние оказывает "шум" эксперимента: даже небольшие ошибки в экспериментальных данных сильно искажают результаты численного дифференцирования. Поэтому необходимо сначала сгладить экспериментальные данные, а затем применять те или иные методы численного дифференцирования.

Сглаживание проводилось по формулам линейного сглаживания по пяти точкам [3]:

(3)

где – сглаженное значение функции в точке 0, – соответственно значения функции в последней (т.-1, т.1) и предпоследней (т.-2, т.2) сглаженных точках с одного и с другого края диапазона значений; – значение функции в точке сглаживания 0; – значения функции в точках, смежных с точкой со значением функции с одной и с другой стороны, по которым происходит сглаживание.

Дифференцирование сглаженных данных производилось по двум смежным точкам по формулам [3]:

; (4)

для начальной и конечной точек применялись формулы соответственно:

, (5)

, (6)

где – производная функции в точке со значением функции ; – значение функций в точке, в которой производится дифференцирование; – значения функции в точках, смежных с точкой со значением функции , с одной и с другой стороны, по которым производилось дифференцирование; h – шаг дифференцирования. В данном случае шаг дифференцирования принимается равным интервалу расстояния измерения индукции в рабочем пространстве.

В табл. 3 приведены рассчитанные по (2) и с применением формул численного дифференцирования (4–6) значения параметра электромагнитной силы. На рис. 4 изображены графики распределения параметра электромагнитной силы в рабочей зоне электромагнитной шайбы, построенные по данным табл. 3. На рис. 4, а приведены графики для всех характерных точек, на рис. 4, б приведены графики для точек 3, 4, 3*, 4*, 5л, 5п. На рис. 5 приведено распределение параметра электромагнитной силы HgradH в рабочей зоне ЭМШ для различных значений расстояния от поверхности ее полюсов.

^ Таблица 2 -

Значения напряженности магнитного поля в рабочей зоне ЭМШ


у,

мм

Напряженность Н, ×103 А/м

1

2

2*

3

3*

4

4*



5п

5

156,8

238,7

242,7

61,27

67,64

17,51

45,36

52,52

54,11

10

144,8

159,2

173,5

58,09

63,66

16,71

34,22

30,24

31,04

15

136,1

135,3

141,7

53,32

59,68

15,92

27,06

22,28

22,28

20

121

111,4

117

48,54

54,91

15,12

22,28

18,3

19,1

25

106,6

93,9

95,49

44,56

49,34

14,32

19,89

15,92

16,71

30

93,11

79,58

81,17

39,79

44,56

13,53

17,51

15,12

15,92

35

80,37

70,03

70,03

35,81

39,79

12,73

15,12

13,53

14,32

40

69,23

59,68

60,48

32,63

35,81

11,94

14,32

12,73

12,73

45

59,68

51,73

52,52

28,65

31,83

11,14

12,73

11,94

11,14

50

52,52

45,36

45,36

26,26

27,85

10,35

11,94

10,35

10,35

55

43,77

38,2

40,58

22,28

25,46

10,35

11,14

10,35

9,55

60

39,79

34,22

35,81

21,49

22,28

9,95

10,35

9,55

9,55

65

35,01

30,24

31,04

19,1

19,89

9,55

9,55

9,55

8,75

70

30,24

26,26

27,85

17,51

18,3

8,75

8,75

8,75

8,75

75

27,06

23,87

23,87

15,92

15,92

7,96

7,96

7,96

7,96

80

23,87

21,49

22,28

14,32

14,32

7,16

7,16

7,96

7,96

85

21,49

18,3

19,1

12,73

13,53

7,16

6,37

7,16

7,16

90

18,3

16,71

17,51

11,14

11,94

6,37

6,37

7,16

7,16



^ Таблица 3 -

Значения параметра электромагнитной силы в рабочей зоне ЭМШ


у,

мм

HgradH, ×10923)

1

2

2*

3

3*

4

4*



5п

5

391,7

1452

1573,6

53,17

61,92

2,82

53,26

76,34

79,9

10

361,2

1224,3

1327,7

49,35

57,67

2,66

45,35

61,94

64,75

15

334,62

968,4

1038,5

45,66

54,03

2,53

35,3

44,56

46,73

20

308,26

575,24

645,28

42,8

51,11

2,42

22,71

22,04

23,07

25

282,11

322,94

373,11

38,14

47,43

2,28

12,98

8,94

9,28

30

241,08

224,38

247,02

32,66

42,14

2,15

7,95

4,81

5,53

35

188,79

153,6

164,89

27,73

35,88

2,02

5,57

3,31

4,06

40

146,86

110,18

112,37

23,36

29,21

1,71

4,1

2,64

3,27

45

109,88

81,83

80,47

18,56

23,53

1,34

2,9

2,06

2,59

50

79,29

59,82

59,77

14,63

19,17

1,11

2,31

1,57

1,87

55

58,75

43,87

44,43

11,62

15

0,99

1,95

1,31

1,25

60

44,22

32,73

33,35

9,17

11,58

0,94

1,65

1,09

0,9

65

31,93

23,35

25,34

7,05

9,41

1,04

1,53

0,89

0,71

70

23,83

17,77

19,72

5,9

7,22

1,03

1,39

0,83

0,68

75

19,27

14,15

15,02

5,33

5,47

0,97

1,14

0,79

0,64

80

15,19

11,03

11,61

4,57

4,59

0,9

0,93

0,69

0,56

85

12,52

9,32

9,97

4,05

4,01

0,77

0,85

0,59

0,59

90

10,82

8,1

8,7

3,54

3,56

0,69

0,78

0,56

0,56



а) б)

Рисунок 4 - Зависимости параметра электромагнитной силы HgradH в рабочей зоне ЭМШ



Рисунок 5 - Распределение параметра
электромагнитной силы HgradH над
характерными точками в рабочей зоне ЭМШ

Из приведенных графиков видно, что в зоне разгрузки ЭМШ (точка 4) для значений расстояния до 50 мм от поверхности электромагнитной шайбы существенно снижается напряженность магнитного поля Н и параметра магнитной силы HgradH по сравнению с точкой 4*, что обеспечивает улучшение условий разгрузки в этом диапазоне расстояний. Также из графиков видно, что в точках 5л и 5п напряженность магнитного поля и параметр электромагнитной силы выше, даже чем в точке 4* (особенно на близких расстояниях). В этом направлении следует проводить исследования, тут возможны два пути решения: изменение конфигурации края полюсов (скругление) или увеличение немагнитного зазора.

Данный железоотделитель проектируется для работы в составе линии по переработке металлургического шлака [1] и предназначен для извлечения скрапа крупностью от 40 до 150 мм. При пересчете на масштаб экспериментальной модели ЭМШ диапазон размеров извлекаемого материала составляет от 8 до 30 мм. При определении расстояния, на котором будет осуществляться передача извлеченного материала, также следует учитывать толщину транспортерной ленты и технологический зазор между поверхностью электромагнита и транспортерной лентой, которые в сумме составят около 30 мм, а при пересчете на масштаб модели – 6 мм.

Таким образом, если считать, что магнитная сила приложена к центру извлеченного тела, то минимальное расстояние от поверхности ЭМШ, на котором будет осуществляться передача извлеченного материала от ЭМШ к электромагнитному шкиву, составит 10 мм, а максимальное – 21 мм (в пересчете на масштаб модели). И, как видно из полученных расчетов, извлекающая магнитная сила в зоне разгрузки (точка 4) для меньшего тела уменьшится в 17 раз, для большего – в 9,4 раза по сравнению с точкой 4*.

Выводы. Наличие выреза во внешнем кольцевом полюсе ЭМШ существенно снижает напряженность магнитного поля и параметр магнитной силы в зоне разгрузки, что улучшает условия разгрузки извлеченного материала.
ЛИТЕРАТУРА

  1. Загирняк М.В., Кузнецов Н.И., Подорож-
    ный С.В. Новый подвесной электромагнитный железоотделитель для извлечения металла из шлака // Вісник КДПУ, 2004.– Вип.1/2004 (24), – С.17-19.

  2. Загирняк М.В., Кузнецов Н.И., Подорожный С.В. Расчет потокораспределения в электромагнитной системе железоотделителя, выполненной в виде шайбы с вырезом в кольцевом полюсе // Праці Луганського відділення Міжнародної академії інформатизації, 2005, №2(1), – С.49–52.

  3. Румшинский Л.З., Математическая обработка результатов измерений. – М.: Наука, 1971.

  4. Загирняк М.В. Исследование, расчет и усовершенствование шкивных магнитных сепараторов: Монография. – К.: ИЗМН, 1996. – 488с.



Стаття надійшла 20.04.2006 р.

Рекомендовано до друку

д.т.н., проф. Родькіним Д.Й.

Вісник КДПУ. Випуск 3/2006 (39). Частина 1.


Добавить документ в свой блог или на сайт

Похожие:

Електричні машини І апарати iconРобоча програма, методичні вказівки та індивідуальні завдання до...
Робоча програма, методичні вказівки та індивідуальні завдання до вивчення дисципліни «Електричні машини» для студентів напряму 050702...

Електричні машини І апарати iconКонструкція І принцип дії 3-фазного ад. 35. Спосіб з’єднання фаз...
З навчальної дисципліни “електричні машини” для студентів напрямків 050702 – «електромеханіка» І

Електричні машини І апарати iconТодичні вказівки до виконання лабораторних робіт для студентів спеціальності...
А. Конструкція, розрахунок І виробництво сільськогосподарських машин. Методичні вказівки до виконання лабораторних робіт студентами...

Електричні машини І апарати iconЗапровадження педагогічної технології викладання теми: „машини для...
Запровадження педагогічної технології викладання теми: „машини для основного І поверхневого обробітку грунту”

Електричні машини І апарати iconМіністерство освіти І науки України
Електричні кола однофазного синусоїдного струму, та перехідні процеси у лінійних електричних колах

Електричні машини І апарати iconРобоча програма, методичні вказівки та індивідуальні завдання до...
Робоча програма, методичні вказівки та індивідуальні завдання з дисципліни «Пiд'йомно-транспортнi машини» для студентів напряму 050503...

Електричні машини І апарати icon«Машини та устаткування для добувної промисловости (струг) (29. 52. 1)»
Строк подання пропозицій конкурсних торгів подовжити до 11: 00 години 31. 03. 2011 р

Електричні машини І апарати iconТранспорт дорожні та будівельні машини
Погрешности переточки сборных фрез с прямолинейной передней поверхностью, затылованных по дуге окружности

Електричні машини І апарати iconЛифты электрические пассажирские и грузовые ремонт ліфти електричні...
Институтом проблем надежности машин и сооружений и Киевским отделением Подъемно-транспортной Академии наук Украины

Електричні машини І апарати iconЛифты электрические пассажирские и грузовые ремонт ліфти електричні...
Институтом проблем надежности машин и сооружений и Киевским отделением Подъемно-транспортной Академии наук Украины


Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
uchebilka.ru
Главная страница