Изучаемые вопросы 8




НазваниеИзучаемые вопросы 8
страница11/45
Дата публикации03.03.2013
Размер2.95 Mb.
ТипМетодическое пособие
uchebilka.ru > Бухгалтерия > Методическое пособие
1   ...   7   8   9   10   11   12   13   14   ...   45
^

Тема 7. Выборочное наблюдение


Изучаемые вопросы

  1. Способы формирования выборочной совокупности.

  2. Определение ошибок выборочной совокупности.

  3. Определение численности выборки.


1. Наблюдение не всегда охватывает все единицы совокупности, иногда в силу большой стоимости или при контроле качества, когда проверка сопровождается разрушением образцов, невозможно провести наблюдение над всей совокупностью.

В этом случае проводят выборочное наблюдение, при котором обследованию подвергается часть единиц совокупности, отобранных случайно, но с заранее известной численностью.

Вся совокупность, из которой производится отбор, называется генеральной, а совокупность отобранных единиц - выборочной. В процессе обследования выборочной совокупности можно рассчитать среднее значение исследуемого признака по выборке (), которое будет отличаться от аналогичной средней по генеральной совокупности (): , т.к. обследование было не сплошным. Величина, на которую отличается от , является ошибкой выборки (репрезентативности). Чем блике размер выборочной совокупности к генеральной, тем меньше ошибка репрезентативности.

Выборочная совокупность может формироваться разными методами. Может быть индивидуальный отбор (когда отбирается каждый раз одна единица совокупности) или серийный.

После отбора отобранные единицы могут быть возвращены в генеральную совокупность - повторный отбор, либо могут не участвовать в дальнейшем отборе - бесповоротный отбор.

Отбор может быть произведен: собственно-случайным способом, механическим, типическим и серийным способами.

При собственно-случайной выборке отбор производится обычной жеребьевкой. Собственно-случайная выборка в статистической практике применяется редко. Обычно отбор осуществляется механически - через определенный интервал. Например, отбор каждого 5-го, 10-го и т.д. студента по алфавитному списку фамилий.

При типическом отборе обследуемая генеральная совокупность подразделяется на типические группы, из которых затем отбирается определенное число единиц так, чтобы сохранить в выборке структуру генеральной совокупности.

При серийной выборке отбор проводится не отдельных единиц, а серий или комплектов.
2. Как уже было сказано выше, между характеристиками выборочной и генеральной совокупности есть разница - ошибка репрезентативности. Ошибки репрезентативности могут быть рассчитаны как средняя и с определенной вероятностью – предельная ошибка.

Средняя ошибка выборки () рассчитывается:

при повторном отборе , (34)

при бесповторном отборе , (35)

где – среднее квадратическое отклонение; n - численность выборочной совокупности; N - численность генеральной совокупности.

Если выборочное наблюдение применяется для определения доли признака, то в формулах вместо среднего квадратического отклонения ставят (см. тема 2, вопрос 3).

Пример. При разработке материалов учета городского населения методом случайного бесповторного отбора было установлено, что в городе 15% жителей - пенсионеры. При этом из 500 тыс. жителей было отобрано 50 тыс. Определить среднюю ошибку для доли жителей-пенсионеров в генеральной совокупности.

По (35)

Значит в среднем ошибка 4,8%.

Предельная ошибка выборки () связана со средней коэффициентом доверия (t): = t .

Коэффициент доверия зависит от вероятности, с которой можно гарантировать определенные размеры предельной ошибки:


Коэффициент доверия (t)

Вероятность

1

0,683

2

0,954

3

0,997

Чтобы определить значение признака в генеральной совокупности (), нужно скорректировать его значение по выборке на предельную ошибку выборки ():

Продолжив наш пример, найдем предельную ошибку для доли пенсионеров с вероятностью 0,954. В этом случае t = 2, то есть = 2  0,048 = 0,096. Значит, доля по генеральной совокупности () будет отличаться от доли по выборке () на 9,6%: . Т.е. доля пенсионеров в городе находится в пределах от 24,6 до 5,4%.
3. Приведенные выше формулы ошибок выборки позволяют заранее рассчитать тот объем выборки, при котором отклонение выборочных показателей от генеральных не превысит заданных размеров, гарантируемых с определенной вероятностью.

Численность выборки (n):

при повторном отборе ; (96)

при бесповторном отборе . (97)

Пример. В городе проживает 2000 семей. В порядке случайной бесповоротной выборки предполагается определить средний размер семы при условии, что ошибка выборочной средней не должна превышать 0,8 с вероятностью 0,954 и при среднем квадратическом отклонении 2,0:

По (97)

При определении необходимой численности выборки по этим формулам для определения дисперсий используют данные предыдущих обследований. При полном отсутствии каких-либо данных о вариации альтернативного признака вместо pq подставляют его максимальное значение, равное 0,25.

Выборочное обследование широко используется в статистических исследованиях при контроле качества, обследованиях бюджетов семей, изучении резервов в производстве.
Вопросы для самопроверки

  1. Может ли средняя ошибка выборки равняться предельной?

  2. При каком способе отбора ошибка репрезентативности меньше?

  3. От каких параметров зависит численность выборочной совокупности?



1   ...   7   8   9   10   11   12   13   14   ...   45

Похожие:

Изучаемые вопросы 8 iconВопросы, изучаемые во 2-м модуле
Развитие статистической (молекулярно-кинетической) теории. Вывод уравнения состояния идеального газа и его сравнение с экспериментальным...

Изучаемые вопросы 8 iconВопросы, изучаемые во 2-м модуле Атомное ядро
Характеристики ядер: заряд, размер и масса. Массовое и зарядовое числа. Момент импульса ядра и его магнитный момент. Состав ядра....

Изучаемые вопросы 8 iconВопросы, изучаемые в 1-м модуле
Трудности классической физики при объяснении строения и стабильности атома. Модели атома Томсона, Резерфорда. Потенциалы возбуждения...

Изучаемые вопросы 8 iconВопросы, изучаемые в курсе физики. II часть. 2008/2009 учебный год
Потенциальная энергия контура с током во внешнем магнитном поле. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей....

Изучаемые вопросы 8 icon2: «Теоретические основы менеджмента»
Управление опирается также на законы, изучаемые другими науками, связанными с управлением (см рис. )

Изучаемые вопросы 8 iconП. Л. Лавров: субъективный метод в социологии Содержание реферат...

Изучаемые вопросы 8 iconДемонстрационный генератор быстропеременных токов
Она, обладая большой мощностью, позволяет демонстрировать изучаемые явления токов высокой частоты перед очень большой аудиторией....

Изучаемые вопросы 8 iconPari пожалуйста, ответьте на вопросы следующим образом: А
Некоторые вопросы могут показаться Вам одинаковыми. Однако, это не так. Вопросы сходные, но не одинаковые

Изучаемые вопросы 8 iconИ вопросы, вопросы, вопросы
Хорошо сидим! (побрехаловки). — Спб.: Ик «Нев­ский про­спект», 2004. — 256 с. (Се­рия: «Школа Мастера Игры Игоря Калинаускаса»)

Изучаемые вопросы 8 iconОдной из его учебных книг показывает путь, которым должно идти познание...
Исходя из этого, одним из важнейших заданий учителя-словесника является формирование речевой компетентности школьника, а следовательно,...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
uchebilka.ru
Главная страница


<