Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки.




Скачать 239.3 Kb.
НазваниеЛекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки.
страница1/3
Дата публикации17.04.2013
Размер239.3 Kb.
ТипЛекция
uchebilka.ru > Информатика > Лекция
  1   2   3
Лекция 15. Регулярные выражения

Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. Теория регулярных выражений. Практика применения регулярных выражений. Разбор текстов и поиск по образцу. Свойства и методы класса Regex и других классов, связанных с регулярными выражениями. Примеры применения регулярных выражений.

Ключевые слова: регулярные выражения; пространство имен RegularExpression; итерация языка; регулярное множество; класс Regex; метод Match; коллекция MatchCollection; класс Match; группы; класс Group.

^ Пространство имен RegularExpression и классы регулярных выражений

Стандартный класс String позволяет выполнять над строками различные операции, в том числе поиск, замену, вставку и удаление подстрок. Есть специальные операции, такие как Join, Split, которые облегчают разбор строки на элементы. Тем не менее, есть классы задач по обработке символьной информации, где стандартных возможностей явно не хватает. Чтобы облегчить решение подобных задач, в Net Framework встроен более мощный аппарат работы со строками, основанный на регулярных выражениях. Специальное пространство имен RegularExpression, содержит набор классов, обеспечивающих работу с регулярными выражениями. Все классы этого пространства доступны для C# и всех языков, использующих каркас Net Framework. В основе регулярных выражений лежит хорошая теория и хорошая практика их применения. Полное описание, как теоретических основ, так и практических особенностей применения этого аппарата в C#, требует отдельной книги. Придется ограничиться введением в эту интересную область работы со строками, не рассматривая подробно все классы, входящие в пространство имен RegularExpression.

^ Немного теории

Пусть T= {a1, a2, ….an} – алфавит символов. Словом в алфавите T называется последовательность подряд записанных символов, а длиной слова – число его символов. Пустое слово, не содержащее символов, обычно обозначается как e. Алфавит T можно рассматривать как множество всех слов длины 1. Рассмотрим операцию конкатенации над множествами, так что конкатенация алфавита T с самим собой дает множество всех слов длины 2. Обозначается конкатенация ТТ как Т2. Множество всех слов длины k обозначается – Tk, его можно рассматривать как k-кратную конкатенацию алфавита T. Множество всех непустых слов произвольной длины, полученное объединением всех множеств Tk, обозначается T+, а объединение этого множества с пустым словом называется итерацией языка и обозначается T*. Итерация описывает все возможные слова, которые можно построить в данном алфавите. Любое подмножество слов L(T), содержащееся в T*, называется языком в алфавите T.

Определим класс языков, задаваемых регулярными множествами. ^ Регулярное множество определяется рекурсивно следующими правилами:

Пустое множество, множество, содержащее пустое слово, одноэлементные множества, содержащие символы алфавита, являются регулярными базисными множествами.

Если множества P и Q являются регулярными, то множества, построенные применением операций объединения, конкатенации и итерации – , PQ, P*, Q* – тоже являются регулярными.

Регулярные выражения представляют удобный способ задания регулярных множеств. Аналогично множествам, они определяются рекурсивно:

Регулярные базисные выражения задаются символами и определяют соответствующие регулярные базисные множества, например, выражение f задает одноэлементное множество {f} при условии, что f символ алфавита T.

Если p и q – регулярные выражения, то операции объединения, конкатенации и итерации – p+q, pq, p*, q* являются регулярными выражениями, определяющими соответствующие регулярные множества.

По сути, регулярные выражения – это более простой и удобный способ записи в виде обычной строки регулярных множеств. Каждое регулярное множество, а, следовательно, и каждое регулярное выражение задает некоторый язык L(T) в алфавите T. Этот класс языков достаточно мощный, с его помощью можно описать интересные языки, но устроены они довольно просто – их можно определить также с помощью простых грамматик, например, правосторонних грамматик. Более важно, что для любого регулярного выражения можно построить конечный автомат, который распознает, принадлежит ли заданное слово языку, порожденному регулярным выражением. На этом основана практическая ценность регулярных выражений.

С точки зрения практика регулярное выражение задает образец поиска. После чего можно проверить, удовлетворяет ли заданная строка или ее подстрока данному образцу. В языках программирования синтаксис регулярного выражения существенно обогащается, что дает возможность более просто задавать сложные образцы поиска. Такие синтаксические надстройки, хотя и не меняют сути регулярных выражений, крайне полезны для практиков, избавляя программиста от ненужных сложностей.

^ В Net Framework эти усложнения, на мой взгляд, чрезмерны. Выигрывая в мощности языка, проигрываем в простоте записи его выражений.

Синтаксис регулярных выражений

Регулярное выражение на C# задается строковой константой. Это может быть обычная константа или @-константа. Чаще всего, следует использовать именно @-константу. Дело в том, что символ “\” широко используется в регулярных выражениях как для записи escape-последовательностей, так и в других ситуациях. Обычные константы в таких случаях будут выдавать синтаксическую ошибку, а @-константы не выдают ошибок и корректно интерпретируют запись регулярного выражения.

Синтаксис регулярного выражения простой формулой не описать, здесь используются набор разнообразных средств:

  • символы и escape-последовательности,

  • символы операций и символы, обозначающие специальные классы множеств,

  • имена групп и обратные ссылки,

  • символы утверждений и другие средства.

Конечно, регулярное выражение может быть совсем простым, например, строка “abc” задает образец поиска, так что при вызове соответствующего метода будут разыскиваться одно или все вхождения подстроки “abc” в искомую строку. Но могут быть и очень сложно устроенные регулярные выражения. Приведу таблицу, в которой дается интерпретация символов, в соответствии с их делением на группы. Таблица не полна, в ней отражаются не все группы, а описание группы не содержит всех символов. Она позволяет дать общее представление о синтаксисе, которое будет дополнено большим числом примеров. За деталями придется обращаться к справочной системе, которая, к сожалению, далеко не идеальна для данного раздела.

^ Таблица 15-1. Символы, используемые в регулярных выражениях

Символ

Интерпретация




^ Категория: escape-последовательности

\b

При использовании его в квадратных скобках соответствует символу “обратная косая” с кодом - \u0008

\t

^ Соответствует символу табуляции \u0009.

\r

Соответствует символу возврата каретки \u000D.

\n

^ Соответствует символу новой строки \u000A.

\e

Соответствует символу escape \u001B.

\040

^ Соответствует символу ASCII, заданному кодом до трех цифр в восьмеричной системе.

\x20

Соответствует символу ASCII, заданному кодом из двух цифр в шестнадцатеричной системе

\u0020

^ Соответствует символу Unicode, заданному кодом из четырех цифр в шестнадцатеричной системе




Категория: подмножества (классы) символов

.

^ Соответствует любому символу, за исключением символа конца строки.

[aeiou]

Соответствует любому символу из множества, заданного в квадратных скобках.

[^aeiou]

^ Отрицание. Соответствует любому символу за исключением символов, заданных в квадратных скобках.

[0-9a-fA-F]

Задание диапазона символов, упорядоченных по коду. Так 0-9 задает любую цифру.

\p{name}

Соответствует любому символу, заданному множеству с именем name, например, имя Ll задает множество букв латиницы в нижнем регистре. Поскольку все символы разбиты на подмножества, задаваемые категорией Unicode, то в качестве имени можно задавать имя категории.

\P{name}

^ Отрицание. Большая буква всегда задает отрицание множества, заданного малой буквой.

\w

Множество символов, используемых при задании идентификаторов – большие и малые символы латиницы, цифры и знак подчеркивания.

\s

^ Соответствует символам белого пробела.

\d

Соответствует любому символу из множества цифр




^ Категория: Операции (модификаторы)

*

Итерация. Задает ноль или более соответствий; например, \w* или (abc)*. Аналогично {0,}.

+

^ Положительная итерация. Задает одно или более соответствий, например, \w+ или (abc)+. Аналогично {1,}.

?

Задает ноль или одно соответствие; например, \w? или (abc)?. Аналогично {0,1}.

{n}

^ Задает в точности n соответствий; например, \w{2}.

{n,}

Задает по меньшей мере n соответствий; например, (abc){2,}.

{n,m}

^ Задает по меньшей мере n, но не более m соответствий; например, (abc){2,5}.




Категория: Группирование

(?)

При обнаружении соответствия выражению, заданному в круглых скобках, создается именованная группа, которой дается имя Name. Например, (? \d{7}). При обнаружении последовательности из семи цифр будет создана группа с именем tel.

()

Круглые скобки разбивают регулярное выражение на группы. Для каждого подвыражения, заключенного в круглые скобки, создается группа, автоматически получающая номер. Номера следуют в обратном порядке, поэтому полному регулярному выражению соответствует группа с номером 0.

(?imnsx)

Включает или выключает в группе любую из пяти возможных опций. Для выключения опции перед ней ставится знак минус. Например, (?i-s: ) включает опцию i, задающую нечувствительность к регистру, и выключает опцию s – статус single-line.

Повторяю, данная таблица не полна. В ней не отражены, например, такие категории, как подстановки, обратные ссылки, утверждения. Для приведенных категорий также не дан полный список возможных символов.

^ Знакомство с классами пространства RegularExpressions

В данном пространстве расположено семейство из одного перечисления и восьми связанных между собой классов.

^ Класс Regex

Это основной класс всегда создаваемый при работе с регулярными выражениями. Объекты этого класса определяют регулярные выражения. Конструктор класса, как обычно, перегружен. В простейшем варианте ему передается в качестве параметра строка, задающая регулярное выражение. В других вариантах конструктора ему может быть передан объект, принадлежащий перечислению RegexOptions, задающий опции, действующие при работе с данным объектом. Среди опций отмечу одну, – позволяющую компилировать регулярное выражение. В этом случае создается программа, которая и будет выполняться при каждом поиске соответствия. При разборе больших текстов скорость работы в этом случае существенно повышается.

Рассмотрим четыре основных метода класса Regex:

^ Метод Match запускает поиск соответствия. В качестве параметра методу передается строка поиска, в которой разыскивается первая подстрока, удовлетворяющая образцу, заданному регулярным выражением. В качестве результата метод возвращает объект класса Match, описывающий результат поиска. При успешном поиске свойства объекта будут содержать информацию о найденной подстроке.

Метод Matches позволяет разыскать все вхождения, то есть все подстроки, удовлетворяющие образцу. У алгоритма поиска есть важная особенность, – разыскиваются непересекающиеся вхождения подстрок. Можно считать, что метод Matches многократно запускает метод Match, каждый раз начиная поиск с того места, на котором закончился предыдущий поиск. В качестве результата возвращается объект MatchCollection, представляющий коллекцию объектов Match.

Метод NextMatch запускает новый поиск, начиная с того места, на котором остановился предыдущий поиск.

Метод Split является обобщением метода Split класса string. Он позволяет, используя образец, разделить искомую строку на элементы. Поскольку образец может быть устроен сложнее, чем простое множество разделителей, то метод Split класса Regex эффективнее, чем его аналог класса string.

^ Классы Match и MatchCollection

Как уже говорилось, объекты этих классов создаются автоматически при вызове методов Match и Matches. Коллекция MatchCollection, как и все коллекции, позволяет получить доступ к каждому ее элементу – объекту Match. Можно, конечно, организовать цикл for each для последовательного доступа ко всем элементам коллекции.

^ Класс Match является непосредственным наследником класса Group, который, в свою очередь, является наследником класса Capture. При работе с объектами класса Match наибольший интерес представляют не столько методы класса, сколько его свойства, большая часть которых наследована от родительских классов. Рассмотрим основные свойства:

  • Свойства Index, Length и Value наследованы от прародителя Capture. Они описывают найденную подстроку,– индекс начала подстроки в искомой строке, длину подстроки и ее значение.

  • Свойство Groups класса Match возвращает коллекцию групп – объект GroupCollection, который позволяет работать с группами, созданными в процессе поиска соответствия.

  • Свойство Captures, наследованное от объекта Group, возвращает коллекцию CaptureCollection. Как видите, при работе с регулярными выражениями реально приходится создавать один объект класса Regex, объекты других классов автоматически появляются в процессе работы с объектами Regex.

^ Классы Group и GroupCollection

Коллекция GroupCollection возвращается при вызове свойства Group объекта Match. Имея эту коллекцию, можно добраться до каждого объекта Group, входящего в коллекцию. Класс Group является наследником класса Capture и, одновременно, является родителем класса Match. От своего родителя он наследует свойства Index, Length и Value, которые и передает своему потомку.

Давайте рассмотрим чуть более подробно, когда и как создаются группы в процессе поиска соответствия. Если внимательно проанализировать предыдущую таблицу, описывающую символы, используемые в регулярных выражениях, в частности символы группирования, то можно понять несколько важных фактов, связанных с группами:

  • При обнаружении одной подстроки, удовлетворяющей условию поиска, создается не одна группа, а коллекция групп.

  • Группа с индексом 0 содержит информацию о найденном соответствии.

  • Число групп в коллекции зависит от числа круглых скобок в записи регулярного выражения. Каждая пара круглых скобок создает дополнительную группу, которая описывает ту часть подстроки, которая соответствует шаблону, заданному в круглых скобках.

  • Группы могут быть индексированы, но могут быть и именованными, поскольку в круглых скобках разрешается указывать имя группы.

В заключение отмечу, что создание именованных групп крайне полезно при разборе строк, содержащих разнородную информацию. Примеры разбора подобных текстов будут даны.

^ Классы Capture и CaptureCollection

Коллекция CaptureCollection возвращается при вызове свойства Captures объектов класса Group и Match. Класс Match наследует это свойство у своего родителя – класса Group. Каждый объект Capture, входящий в коллекцию характеризует соответствие, захваченное в процессе поиска – соответствующую подстроку. Но поскольку свойства объекта Capture передаются по наследству его потомкам, то можно избежать непосредственной работы с объектами Capture. По крайней мере, в моих примерах не встретится работа с этим объектом, хотя за кулисами он непременно присутствует.

^ Перечисление RegexOptions

Объекты этого перечисления описывают опции, влияющие на то, как устанавливается соответствие. Обычно такой объект создается первым и передается конструктору объекта класса Regex. В вышеприведенной таблице, в разделе, посвященном символам группирования, говорится о том, что опции можно включать и выключать, распространяя, тем самым, их действие на участок шаблона, заданный соответствующей группой. Об одной из этих опций – Compiled, влияющей на эффективность работы регулярных выражений, уже упоминалось. Об остальных говорить не буду, при необходимости можно посмотреть справку.

^ Класс RegexCompilationInfo

При работе со сложными и большими текстами полезно предварительно скомпилировать используемые в процессе поиска регулярные выражения. В этом случае необходимо будет создать объект класса RegexCompilationInfo и передать ему информацию о регулярных выражениях, подлежащих компиляции, и о том, куда поместить оттранслированную программу. Дополнительно в таких ситуациях следует включить опцию Compiled. К сожалению, соответствующих примеров на эту тему не будет.
  1   2   3

Добавить документ в свой блог или на сайт

Похожие:

Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. iconКраткое Часть Использование рнр 25
Манипулирование строками и регулярные выражения 95 Глава Повторное использование кода и создание функций 115

Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. iconФормальные языки: алфавит, операции с символами, слово, определение...
О в алфавите I – это конечная последовательность элементов (символов) из алфавита I. Например, если алфавит языка состоит только...

Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. iconФормальные языки: алфавит, операции с символами, слово, определение...
О в алфавите I – это конечная последовательность элементов (символов) из алфавита I. Например, если алфавит языка состоит только...

Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. iconДополнительные средства C#
В этой главе описаны дополнительные средства языка C# и среды Visual Studio: указатели, регулярные выражения и документация в формате...

Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. iconВ рубрику: «Вопросы праворазъяснительной практики»
Одно из главных основ демократического общества и одно из основных условий для его прогресса и развития каждой индивидуальной личности...

Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. iconМы можем выразить будущее действие при помощи глагола в Future Simple/выражения...
Часто возникает вопрос – использовать для выражения будущего действия глагол во Future Simple или выражение be going to? Сравним...

Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. iconЛекция 8
Выполнение оператора if начинается с вычисления выражения. Далее выполнение осуществляется по следующей схеме

Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. iconРегулярные экскурсионные авиатуры

Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. iconРегулярные экскурсии с группой (присоединение к группам) с 26/03 по 31/10/2013

Лекция 15. Регулярные выражения Регулярные выражения. Пространство RegularExpressions и его классы. Регулярные выражения и языки. iconРегулярные индивидуальные туры в Австралию и Океанию 2009-2010

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
uchebilka.ru
Главная страница


<